Thursday, 4 July 2013

Crime Scene Investigation with neutron scattering

neat!!! Crime Scene Investigation with neutron scattering?!!! A new way of detecting and visualizing fingerprints from crime scenes: New fluorescent fingerprint tag aims to increase IDs from ‘hidden’ fingerprints on bullets and knives: http://www.ill.eu/news-events/press-room/press-releases/new-fluorescent-fingerprint-tag-aims-to-increase-ids-from-hidden-fingerprints-on-bullets-and-knives-3072013/ "A new way of detecting and visualizing fingerprints from crime scenes using colour-changing fluorescent films could lead to higher confidence identifications from latent (hidden) fingerprints on knives, guns, bullet casings and other metal surfaces. The technique is the result of a collaboration between the University of Leicester, the Institut Laue-Langevin and the ISIS pulsed neutron and muon source, and will be presented today at the Royal Society of Chemistry’s Faraday Discussion in Durham.
When your finger touches a surface, it leaves behind deposits of sweat and natural oils in a pattern that mirrors the ridges and troughs found on your fingertips. The odds of two individuals having identical fingerprints are 64 billion to 1, making them an ideal tool for identification in criminal investigations.
The greatest source of fingerprint forensic evidence comes from latent fingerprints, i.e. those not immediately visible to the eye, because they are less likely to be ‘wiped’. However, visualizing these prints with sufficient clarity for positive identification often proves difficult. Despite the availability of several enhancement techniques, only 10% of fingerprints taken from crime scenes are of sufficient quality to be used in court.
The classical approach to enhance latent print visibility is to apply a coloured powder that adheres to the sticky residue and provides a visual contrast to the underlying surface. However, these techniques require significant preservation of fingerprint material and are therefore vulnerable to ageing, environmental exposure or attempted washing of the fingerprint residue.
To address this, researchers from the University of Leicester have been working on a new technique that visualizes fingerprints by exploiting their electrically insulating characteristics. Here, the fingerprint material acts like a mask or stencil, blocking an electric current that is used to deposit a coloured electro-active film. This directs the coloured film to the regions of bare surface between the fingerprint deposits, thereby creating a negative image of the print. Unlike conventional fingerprint visualization reagents, the polymers used by the University of Leicester researchers are electrochromic, that is to say they change from one colour to another when subjected to an electrical voltage.
The technique is highly sensitive as even tiny amounts of insulating residue, just a few nanometres thick, can prevent polymer deposition on the metal below. As a result, much less fingerprint residue is required than is typical for other techniques. Also, because it focuses on the gaps between the fingerprint deposits, it can be used in combination with existing (e.g. powder-based) approaches."

No comments:

Post a Comment